Biotech to the rescue of brussels sprouts

0
3578

AN international team has identified the genes that make these plants resistant to the pathogen that attacks crops belonging to the cabbage family all over the world.

“Surnames” aside, cabbages are grown nowadays all over the world.
Like them, many other plants from the Brassicaceae family such as cauliflower, broccoli, cabbage and even mustard -yes, strange as it may seem and though their tastes are very different, a Brussels sprout and a mustard seed belong to the same family- have a common enemy: white rust, or at least one kind of white rust.

Specifically, cabbages are threatened by a disease caused by a pathogen called Albugo candida, which acts exactly like a fungus, though it is not actually a fungus.

That is to say, it spreads under the right conditions of humidity and temperature and eats up the nutrients of the plants it attacks.

Though not lethal, the disease is fairly common and can be identified by the appearance of white pustules on the plant’s leaves that change colour until they turn brown, damaging the affected part until it is no longer edible.

The similarities it shares with fungi has facilitated the use of treatments for white rust being modeled on fungicides. Nevertheless, the need to find long-term solutions in order to curb low harvest yields has the international scientific community hard at work.

Recently, the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) has published the work of a team made up of researchers from eight European universities and research centers headed by Sainsbury Laboratory in Norwich, UK.

Among these researchers is Amey Redkar, a researcher from the Genetics Department at the University of Cordoba.

This research team has been able to identify multiple genes that are resistant to Albugo cándida.

These genes are nucleotide-binding leucine-rich repeats (also known as NLR) and they have been identified by means of a plant model commonly used in plant biotechnology laboratories: Arabidopsis thaliana, which allows for extrapolating results to other crops.

In fact, identifying these genes that become resistant to white rust allows for designing new genetic improvement strategies for different cultivated plant species.

This is a new accomplishment in basic research with clear biotechnological applications.

The research team, to which Amey Redkar belongs and the one University of Cordoba Genetics Professor Antonio Di Pietro heads, specialides in this line of work. Specifically, Redkar is part of the Foundation project, funded by the European Union’s Marie Sklodowska-Curie Actions programme.

SHARE
Previous articleWhat is jelly fish made of?
Next articleGolden rice to be available in Bangladesh soon
The Petri Dish is malaysia’s first dedicated science newspaper. Through The Petri Dish we aim to engage the public on the latest developments on biotechnology.