Seasonal migrations shift earlier

0
30

IN what the authors believe is one of the first studies to examine climate change impact on the timing of bird migration on a continental scale, researchers report that spring migrants were likely to pass certain stops earlier now than they would have 20 years ago. Also, temperature and migration timing were closely aligned, with the greatest changes in migration timing occurring in the regions warming most rapidly. Timing shifts were less apparent in fall, they add.

Writing in Nature Climate Change, lead researcher Kyle Horton at Colorado State University (CSU), with artificial intelligence researcher Dan Sheldon at the University of Massachusetts Amherst and senior author Andrew Farnsworth of the Cornell Lab of Ornithology, describe how they analyzed 24 years of radar data from the National Oceanic and Atmospheric Administration (NOAA) for this study of nocturnal bird migration.

Horton describes the breadth of the research, which observed nighttime migratory behaviors of hundreds of species representing billions of birds, as “critically important” to understanding and learning more answers about shifting migration patterns. “To see changes in timing at continental scales is truly impressive, especially considering the diversity of behaviors and strategies used by the many species the radars capture,” he says, adding that the observed shifts do not necessarily mean that migrants are keeping pace with climate change.

Farnsworth says the team’s research answered, for the first time, key questions on birds and climate change. “Bird migration evolved largely as a response to changing climate,” he points out. “It’s a global phenomenon involving billions of birds annually. And it’s not a surprise that birds’ movements track changing climates. But how assemblages of bird populations respond in an era of such rapid and extreme changes in climate has been a black box. Capturing scales and magnitudes of migration in space and time has been impossible until recently.”

Horton says that this access to the data and cloud computing greatly enhanced the team’s ability to synthesize the findings. “To process all of these data, without cloud computing, it would have taken over a year of continuous computing,” he notes. Instead, the team crunched the numbers in about 48 hours.

As Sheldon at UMass Amherst points out, these bird flights have been recorded for decades by the National Weather Services’ network of constantly scanning weather radars, but until recently these data have been mostly out of reach for bird researchers, partly because the sheer magnitude of information and lack of tools to analyze it made only limited studies possible.

SHARE
Previous articleMachine learning create better drugs
Next articleDogs can count
The Petri Dish is malaysia’s first dedicated science newspaper. Through The Petri Dish we aim to engage the public on the latest developments on biotechnology.